Consumer Confidence Report

Annual Drinking Water Quality Report

MOUNT CARMEL

IL1850200

Annual Water Quality Report for the period of January 1 to December 31, 2022

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

The source of drinking water used by

MOUNT CARMEL is Ground Water Under Direct Influence of Surface Water $% \left(1\right) =\left(1\right) +\left(1\right$

For more information regarding this report contact:

Name Keith Reed

Phone (018-262-487)

Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien.

Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population.

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Source Water Information

Source Water Name	Type of Water	Report Status	Location
WELL 1 (01047)	GU	Active	WEST SIDE WABASH RIVER
WELL 2 (01048)	GU	Active	WEST SIDE WABASH RIVER
WELL 3 (01049)	GU	Active	WEST SIDE WABASH RIVER

04/11/2023 - IL1850200_2022_2023-04-11_12-19-53.PDF

Source Water Assessment

We want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. The source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this information, please stop by City Hall or call our water operator at 68-362-1871. To view a summary version of the completed Source Water Assessments, including: Importance of Source Water; Susceptibility to Contamination Determination; and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl.

Source of Water: MOUNT CARMELTO determine Mount Carmel's susceptibility to groundwater contamination, available data from well logs, land use, and a well site survey were reviewed. During the survey of Mount Carmel's source water protection area, Illinois EPA staff recorded no potential sources, routes, or possible problem sites within the 400 foot minimum setback zone or the 2,500 foot maximum setback zone of the community wells. The Illinois EPA considers the source water of this facility to be susceptible to contamination. This determination is based on a number of criteria including monitoring conducted at the wells, monitoring conducted at the entry point to the distribution system, and the available hydrogeologic data on the wells.

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples		Likely Source of Contamination
0	1 positive monthly sample.	1		0	N	Naturally present in the environment.

Lead and Copper

Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	09/22/2021	1.3	1.3	0.294	0	ppm		Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.

Water Quality Test Results

Definitions:

The following tables contain scientific terms and measures, some of which may require explanation.

Avg:

Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment:

A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment:

A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL:

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL:

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not

Water Quality Test Results

goal or MRDLG:

reflect the benefits of the use of disinfectants to control microbial contaminants.

na:

not applicable.

mrem:

millirems per year (a measure of radiation absorbed by the body)

ppb:

micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

ppm:

milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

Treatment Technique or TT:

A required process intended to reduce the level of a contaminant in drinking water.

Regulated Contaminants

Disinfectants and Disinfection By- Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorine	12/31/2022	1.2	0.69 - 1.7	MRDLG = 4	MRDL = 4	ppm	N	Water additive used to control microbes.
Haloacetic Acids (HAA5)	2022	28	17.7 - 34.1	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2022	57	39.6 - 57.2	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2022	0.069	0.069 - 0.069	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	2022	0.5	0.51 - 0.51	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	2022	1	1.03 - 1.03	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Sodium	2022	11	10.8 - 10.8			ppm	N	Erosion from naturally occuring deposits. Used in water softener regeneration.
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium 226/228	12/13/2021	0.91	0.91 - 0.91	0	5	pCi/L	N	Erosion of natural deposits.
Gross alpha excluding radon and uranium	12/13/2021	3.15	3.15 - 3.15	0	15	pCi/L	N	Erosion of natural deposits.

Turbidity

	Limit (Treatment Technique)	Level Detected	Violation	Likely Source of Contamination	
ighest single measurement	1 NTU	0.283 NTU	N	Soil runoff.	

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

95PT

Lowest monthly % meeting limit	0.3 NTU	100%	N	Soil runoff.

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section.

Dear Water Customer,

The Illinois Environmental Protection Agency recently tested our water system for compounds known as Per- and Polyfluoroalkyl Substances (PFAS) as part of a statewide investigation of community water supplies. PFAS are a group of thousands of manmade substances that have been produced in the United States since the 1940's and utilized for a variety of applications ranging from water and stain-proofing to firefighting. Some PFAS have been phased out of production due to environmental and human health concerns, yet the persist in the environment and may contaminate surface and ground waters.

Neither the Illinois EPA nor the US EPA have yet to develop enforceable drinking water standards for PFAS. In the interim, Illinois EPA has developed health-based guidance levels for the small number of PFAS for which there is appropriate information to do so. The health-based guidance levels are intended to be protective of all people consuming the water over a lifetime of exposure. It is important to understand that health-based guidance levels are not regulatory limits for drinking water. Rather, the health-based guidance levels are benchmarks against which sampling results are compared to determine if additional investigation or other response action is necessary.

Illinois EPA testing has determined that one or more PFAS were detected in our water system at values greater than or equal to the Illinois EPA health-based guidance levels, as provided in the table below.

For more information about PFAS health advisories please visit the following link https://epa.illinois.gov/topics/water-quality/pfas/pfas/pfas-healthadvisory.html

PFAS Analyte	Acronym	Health-Based Guidance Level (ng/L)	Analytical Results (ng/L)
Perfluorobutanesulfonic acid	PFBS	2,100	
Perfluorohexanesulfonic acid	PFHxS	140	
Perfluorononanoic acid	PFNA	21	
Perfluorooctanesulfonic acid	PFOS	14	2.8, 3.9, 2.7, 3.9, 2.1
Perfluorooctanoic acid	PFOA	2	
Perfluorohexanoic acid	PFHxA	560,000	AND A THE STREET OF THE STREET
Hexafluoropropylene oxide dimer acid	HFPO-DA	560	